All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multipolar Fuzzy Hyperideals in Ordered Semihypergroups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F23%3A00558294" target="_blank" >RIV/60162694:G43__/23:00558294 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/10/19/3424" target="_blank" >https://www.mdpi.com/2227-7390/10/19/3424</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10193424" target="_blank" >10.3390/math10193424</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multipolar Fuzzy Hyperideals in Ordered Semihypergroups

  • Original language description

    An multi-polar fuzzy set is a robust mathematical model to examine multipolar, multiattribute, and multi-index data. The multi-polar fuzzy sets was created as a useful mechanism to portray uncertainty in multiattribute decision making. In this article, we consider the theoretical applications of multi-polar fuzzy sets. We present the notion of multi-polar fuzzy sets in ordered semihypergroups and define multi-polar fuzzy hyperideals (bi-hyperideals, quasi hyperideals) in an ordered semihypergroup. Relations between multi-polar fuzzy hyperideals, multi-polar fuzzy bi-hyperideals and multi-polar fuzzy quasi hyperideals are discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MATHEMATICS

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    19

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

    3424

  • UT code for WoS article

    000866974600001

  • EID of the result in the Scopus database

    2-s2.0-85139848911