Closed-form solutions of second-order linear difference equations close to the self-adjoint Euler type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00558455" target="_blank" >RIV/60162694:G43__/24:00558455 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/23:00130083
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1002/mma.8836" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mma.8836</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.8836" target="_blank" >10.1002/mma.8836</a>
Alternative languages
Result language
angličtina
Original language name
Closed-form solutions of second-order linear difference equations close to the self-adjoint Euler type
Original language description
This paper is dedicated to obtaining closed-form solutions of linear difference equations which are asymptotically close to the self-adjoint Euler-type difference equation. In this sense, the equation is related to the Euler-Cauchy differential equation y ''+lambda/t(2)y = 0. Throughout the paper, we consider a system of sequences which behave asymptotically as an iterated logarithm.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA20-11846S" target="_blank" >GA20-11846S: Differential and difference equations of real orders: Qualitative analysis and its applications</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
ISSN
0170-4214
e-ISSN
1099-1476
Volume of the periodical
46
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
5314-5327
UT code for WoS article
000876819700001
EID of the result in the Scopus database
2-s2.0-85141388262