Synthesis, inhibition studies against AChE and BChE, drug-like profiling, kinetic analysis and molecular docking studies of N-(4-phenyl-3-aroyl-2(3H)-ylidene) substituted acetamides
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG44__%2F20%3A00555473" target="_blank" >RIV/60162694:G44__/20:00555473 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022286019315686" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022286019315686</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.molstruc.2019.127459" target="_blank" >10.1016/j.molstruc.2019.127459</a>
Alternative languages
Result language
angličtina
Original language name
Synthesis, inhibition studies against AChE and BChE, drug-like profiling, kinetic analysis and molecular docking studies of N-(4-phenyl-3-aroyl-2(3H)-ylidene) substituted acetamides
Original language description
Halogenated and non-halogenated N-(4-phenyl-3-aroyl-2(3H)-ylidene) substituted acetamides were prepared by base-catalyzed cyclization of corresponding acetyl thioureas with phenacyl bromide. The synthesized compounds were structurally characterized by H-1 NMR and C-13 NMR spectroscopy and were screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme inhibition activities. Molecular docking studies, drug-like profiling and kinetic analysis were performed to further investigate the inhibition mechanism of the compounds. This study provided useful insights into the design and development of novel dual inhibitors, in addition to understanding the mechanism by which such drugs interact with targets and exert their biochemical action. All the compounds showed superior inhibition profile compared to the standards possessing sub-micromolar and micromolar IC50 values for AChE and BChE, respectively. Docking simulations revealed that the compound 6g showed strong binding inside the active site gorges of both AChE and BChE. An excellent agreement was obtained as the best docked poses showed important binding features mostly based on interactions due to aromatic moieties and oxygen atoms of the compound. Cation-pi/pi-pi interactions together with hydrogen bond forces were the key players responsible for ligand anchoring in the active sites. The striking results accomplished both in docking computations and experimental findings ascertained that the compound 6g can serve as a scaffold for both AChE and BChE inhibition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Molecular Structure
ISSN
0022-2860
e-ISSN
1872-8014
Volume of the periodical
1203
Issue of the periodical within the volume
Mar
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
127459
UT code for WoS article
000504448700080
EID of the result in the Scopus database
2-s2.0-85075898431