RENEB Inter-Laboratory Comparison 2021: The Dicentric Chromosome Assay
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG44__%2F24%3A00560257" target="_blank" >RIV/60162694:G44__/24:00560257 - isvavai.cz</a>
Result on the web
<a href="https://meridian.allenpress.com/radiation-research/article/199/6/556/492028/RENEB-Inter-Laboratory-Comparison-2021-The" target="_blank" >https://meridian.allenpress.com/radiation-research/article/199/6/556/492028/RENEB-Inter-Laboratory-Comparison-2021-The</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1667/RADE-22-00202.1" target="_blank" >10.1667/RADE-22-00202.1</a>
Alternative languages
Result language
angličtina
Original language name
RENEB Inter-Laboratory Comparison 2021: The Dicentric Chromosome Assay
Original language description
After large-scale radiation accidents where many individuals are suspected to be exposed to ionizing radiation, biological and physical retrospective dosimetry assays are important tools to aid clinical decision making by categorizing individuals into unexposed/minimally, moderately or highly exposed groups. Quality-controlled inter-laboratory comparisons of simulated accident scenarios are regularly performed in the frame of the European legal association RENEB (Running the European Network of Biological and Physical retrospective Dosimetry) to optimize international networking and emergency readiness in case of large-scale radiation events. In total 33 laboratories from 22 countries around the world participated in the current RENEB inter-laboratory comparison 2021 for the dicentric chromosome assay. Blood was irradiated in vitro with X rays (240 kVp, 13 mA, similar to 75 keV, 1 Gy/min) to simulate an acute, homogeneous whole-body exposure. Three blood samples (no. 1: 0 Gy, no. 2: 1.2 Gy, no. 3: 3.5 Gy) were sent to each participant and the task was to culture samples, to prepare slides and to assess radiation doses based on the observed dicentric yields from 50 manually or 150 semi-automatically scored metaphases (triage mode scoring). Approximately two-thirds of the participants applied calibration curves from irradiations with gamma rays and about 1/3 from irradiations with X rays with varying energies. The categorization of the samples in clinically relevant groups corresponding to individuals that were unexposed/minimally (0-1 Gy), moderately (1-2 Gy) or highly exposed (>2 Gy) was successfully performed by all participants for sample no. 1 and no. 3 and by >= 74% for sample no. 2. However, while most participants estimated a dose of exactly 0 Gy for the sham-irradiated sample, the precise dose estimates of the samples irradiated with doses > 0 Gy were systematically higher than the corresponding reference doses and showed a median deviation of 0.5 Gy (sample no. 2) and 0.95 Gy (sample no. 3) for manual scoring. By converting doses estimated based on gamma-ray calibration curves to X-ray doses of a comparable mean photon energy as used in this exercise, the median deviation decreased to 0.27 Gy (sample no. 2) and 0.6 Gy (sample no. 3). The main aim of biological dosimetry in the case of a large-scale event is the categorization of individuals into clinically relevant groups, to aid clinical decision making. This task was successfully performed by all participants for the 0 Gy and 3.5 Gy samples and by 74% (manual scoring) and 80% (semi-automatic scoring) for the 1.2 Gy sample. Due to the accuracy of the dicentric chromosome assay and the high number of participating laboratories, a systematic shift of the dose estimates could be revealed. Differences in radiation quality (X ray vs. gamma ray) between the test samples and the applied dose effect curves can partly explain the systematic shift. There might be several additional reasons for the observed bias (e.g., donor effects, transport, experimental conditions or the irradiation setup) and the analysis of these reasons provides great opportunities for future research. The participation of laboratories from countries around the world gave the opportunity to compare the results on an international level.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10610 - Biophysics
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Radiation Research
ISSN
0033-7587
e-ISSN
1938-5404
Volume of the periodical
199
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
556-570
UT code for WoS article
001004143500003
EID of the result in the Scopus database
2-s2.0-85162006097