All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F05%3A10748" target="_blank" >RIV/60460709:41210/05:10748 - isvavai.cz</a>

  • Alternative codes found

    RIV/60460709:41410/05:10748

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils

  • Original language description

    Distinguishing between different sources of potentially toxic elements in soils can be difficult. This paper describes an application of principal component analysis (PCA) to distinguish between geogenic enrichment and anthropogenic pollution with Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn at 14 localities in Northern and North-eastern Czech Republic. Element speciation, profile distribution, and local geology were used to facilitate interpretation of the PCA results. Of the total element contents in the topsoil and subsoil, a group of non-polluting elements, comprising Co, Cr, Cu, Ni, and Zn, was identified by PCA. There were more non-polluting elements in the subsoil than in the topsoil. The silicate-bound fraction was the most abundant in their speciation. They are likely to be mainly of geogenic origin, therefore. Beryllium also probably originated mainly from parent rocks. However, it had a closer relationship with geogenic Hg and Pb. Cadmium, Pb, and Hg showed strong topsoil enrichme

  • Czech name

    Analýza hlavních komponent jako nástroj k určení původu potenciálně toxických prvků v půdách

  • Czech description

    Distinguishing between different sources of potentially toxic elements in soils can be difficult. This paper describes an application of principal component analysis (PCA) to distinguish between geogenic enrichment and anthropogenic pollution with Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn at 14 localities in Northern and North-eastern Czech Republic. Element speciation, profile distribution, and local geology were used to facilitate interpretation of the PCA results. Of the total element contents in the topsoil and subsoil, a group of non-polluting elements, comprising Co, Cr, Cu, Ni, and Zn, was identified by PCA. There were more non-polluting elements in the subsoil than in the topsoil. The silicate-bound fraction was the most abundant in their speciation. They are likely to be mainly of geogenic origin, therefore. Beryllium also probably originated mainly from parent rocks. However, it had a closer relationship with geogenic Hg and Pb. Cadmium, Pb, and Hg showed strong topsoil enrichme

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    DF - Pedology

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA526%2F02%2F1516" target="_blank" >GA526/02/1516: Application of different pedometric methods on results of soil survey and their comparison</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geoderma

  • ISSN

    0016-7061

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    128

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    289-300

  • UT code for WoS article

  • EID of the result in the Scopus database