All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The role of Fe- and Mn-oxides during EDTA-enhanced phytoextraction of heavy metals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F07%3A19346" target="_blank" >RIV/60460709:41210/07:19346 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The role of Fe- and Mn-oxides during EDTA-enhanced phytoextraction of heavy metals

  • Original language description

    In several cases ethylenediaminetetraacetic acid (EDTA) proved to be an efficient mobilising amendment during chemically enhanced phytoextraction of heavy metals. The presence of Fe-(hydr)oxides and their dissolution after the addition of EDTA can limitthe phytoextraction of the targeted heavy metals due to the high stability of the formed Fe(III)EDTA complexes. This study has focused on the influence of Fe- and Mn-oxides and hydroxides dissolution on heavy metal uptake by Zea mays in a two-year EDTA-enhanced phytoextraction process. Incubation experiments and speciation modelling proved the increased concentrations of Mn and Fe through the dissolution of Mn-and Fe-(hydr)oxides. Furthermore, increased Fe and Mn accumulation was observed in maize plants after the second year of the phytoextraction process. Therefore, the presence of Mn- and especially Fe-(hydr)oxides proved to be a limiting factor during EDTA-enhanced phytoextraction of heavy metals from contaminated soils.

  • Czech name

    Role oxidů Fe a Mn při EDTA-podporované fytoextrakci těžkých kovů

  • Czech description

    In several cases ethylenediaminetetraacetic acid (EDTA) proved to be an efficient mobilising amendment during chemically enhanced phytoextraction of heavy metals. The presence of Fe-(hydr)oxides and their dissolution after the addition of EDTA can limitthe phytoextraction of the targeted heavy metals due to the high stability of the formed Fe(III)EDTA complexes. This study has focused on the influence of Fe- and Mn-oxides and hydroxides dissolution on heavy metal uptake by Zea mays in a two-year EDTA-enhanced phytoextraction process. Incubation experiments and speciation modelling proved the increased concentrations of Mn and Fe through the dissolution of Mn-and Fe-(hydr)oxides. Furthermore, increased Fe and Mn accumulation was observed in maize plants after the second year of the phytoextraction process. Therefore, the presence of Mn- and especially Fe-(hydr)oxides proved to be a limiting factor during EDTA-enhanced phytoextraction of heavy metals from contaminated soils.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    DK - Contamination and decontamination of soil including pesticides

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA526%2F06%2F0418" target="_blank" >GA526/06/0418: Experimental investigation of metal mobility in soils artificially contaminated by air-pollution-control residues from secondary Pb metallurgy</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plant, Soil and Environment

  • ISSN

    1214-1178

  • e-ISSN

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    9

  • Pages from-to

    216-224

  • UT code for WoS article

  • EID of the result in the Scopus database