Soil organic carbon and texture retrieving and mapping using proximal, ariborne and Sentinel-2 spectral imaging
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F18%3A77387" target="_blank" >RIV/60460709:41210/18:77387 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.rse.2018.09.015" target="_blank" >http://dx.doi.org/10.1016/j.rse.2018.09.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rse.2018.09.015" target="_blank" >10.1016/j.rse.2018.09.015</a>
Alternative languages
Result language
angličtina
Original language name
Soil organic carbon and texture retrieving and mapping using proximal, ariborne and Sentinel-2 spectral imaging
Original language description
Soil Organic Carbon is a useful representative of soil fertility and an essential parameter in controlling thedynamics of various agrochemicals in soil. Soil texture is also used to calculate soils ability to retain water for plant growth. SOC andsoil texture are thus important parameters of agricultral soils and need to be regularly the recently operated Sentinel 2 missions provide free imagery. This study compared the capabilities on Sentinel 2 for monitoring and mapping of SOC and soil texture with those obtained from airborne hyperspectral and lab ASD FieldSpec spectroradiometer measurements at four agricultural sites in the Czech Republic. Combination of 10 extracted bands of the Sentinel-2 and 18 spectral indices, as independent variables, were used to train prediction models and then produce spatial distribution maps of the selected attributes. Results showed that the prediction accuracy based on lab spectroscopy, airborne and Sentinel-2 in the majority of the sites was adequate for SOC and fa
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40104 - Soil science
Result continuities
Project
<a href="/en/project/GA17-27726S" target="_blank" >GA17-27726S: Spatial prediction of soil properties and classes based on the position in landscape and on other environmental covariates</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Remote Sensing of Environment
ISSN
0034-4257
e-ISSN
1879-0704
Volume of the periodical
218
Issue of the periodical within the volume
N
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
89-103
UT code for WoS article
000449449800007
EID of the result in the Scopus database
2-s2.0-85053836935