All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modelling potentially toxic elements in forest soils with viseNIR spectra and learning algorithms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F20%3A81999" target="_blank" >RIV/60460709:41210/20:81999 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S026974912036262X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S026974912036262X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.envpol.2020.115574" target="_blank" >10.1016/j.envpol.2020.115574</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modelling potentially toxic elements in forest soils with viseNIR spectra and learning algorithms

  • Original language description

    The surface organic horizons in forest soils have been affected by air and soil pollutants, including potentially toxic elements (PTEs). Monitoring of PTEs requires a large number of samples and adequate analysis. Visible-near infrared (vis-NIR 350-2500 nm) spectroscopy provides an alternative method to conventional laboratory measurements, which are time-consuming and expensive. However, vis-NIR spectroscopy relies on an empirical calibration of the target attribute to the spectra. This study examined the capability of vis-NIR spectra coupled with machine learning (ML) techniques (partial least squares regression (PLSR), support vector machine regression (SVMR), and random forest (RF)) and a deep learning (DL) approach called fully connected neural network (FNN) to assess selected PTEs (Cr, Cu, Pb, Zn, and Al) in forest organic horizons. The dataset consists of 2160 samples from 1080 sites in the forests over all the Czech Republic. At each site, we collected two samples from the fragmented (F) and

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

    <a href="/en/project/GJ18-28126Y" target="_blank" >GJ18-28126Y: Soil contamination assessment using hyperspectral orbital data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental Pollution

  • ISSN

    0269-7491

  • e-ISSN

    1873-6424

  • Volume of the periodical

    267

  • Issue of the periodical within the volume

    december

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    0-0

  • UT code for WoS article

    000593966000003

  • EID of the result in the Scopus database

    2-s2.0-85090718445