All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of Cubist models for soil organic carbon prediction via portable XRF measured data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F21%3A85811" target="_blank" >RIV/60460709:41210/21:85811 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007/s10661-021-08946-x.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s10661-021-08946-x.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10661-021-08946-x" target="_blank" >10.1007/s10661-021-08946-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of Cubist models for soil organic carbon prediction via portable XRF measured data

  • Original language description

    Soil organic carbon SOC tends to form complexes with most metallic ions within the soil system. Relatively few studies compare SOC predictions via portable Xray fluorescence pXRF measured data coupled with the Cubist algorithm. The current study applied three different Cubist models to estimate SOC while using several pXRF measured data. Soil samples were collected from the Litavka floodplain area during two separate sampling campaigns in 2018. Thirteen pXRF data or predictors (K, Ca, Rb, Mn, Fe, As, Ba, Th, Pb, Sr, Ti, Zr, and Zn) were selected to develop the proposed models. Validation and comparison of the models applied the mean absolute error (MAE), root mean square error (RMSE), and coefficient o determination (R2). The results revealed that Cubist 1, utilizing all the predictors yielded the best model outcome (MAE = 0,51, RMSE = 0,68, R2 = 0,78) followed by Cubist 2, using predictors with relatively high importance (VarImp. predictors) (MAE = 0,64, RMSE = 0,82, R2 = 0,68), and lastly Cubist 3

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000845" target="_blank" >EF16_019/0000845: Centre for investigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of athropogenic origin: assessment of contamination risks for the quality of production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental Monitoring and Assessment

  • ISSN

    0167-6369

  • e-ISSN

    1573-2959

  • Volume of the periodical

    193

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    0-0

  • UT code for WoS article

    000629815500003

  • EID of the result in the Scopus database

    2-s2.0-85102661744