All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

In-field soil spectroscopy in Vis-NIR range for fast and reliable soil analysis: A review

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F24%3A100046" target="_blank" >RIV/60460709:41210/24:100046 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1111/ejss.13481" target="_blank" >https://doi.org/10.1111/ejss.13481</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/ejss.13481" target="_blank" >10.1111/ejss.13481</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    In-field soil spectroscopy in Vis-NIR range for fast and reliable soil analysis: A review

  • Original language description

    In-field soil spectroscopy represents a promising opportunity for fast soil analysis, allowing the prediction of several soil properties from one spectral reading representing one soil sample. This facilitates data acquisition from large amounts of samples through its rapidity and the absence of required chemical processing. This is of particular interest in agriculture, where the chance to retrieve information from soils directly in the field is very appealing. This review is focused on in-field visible to near infrared (Vis-NIR) spectroscopy (350-2500 nm), aimed at analysing soils directly in the field through proximal sensing. The main scope was to explore the available knowledge to identify existing gaps limiting the reliability and robustness of in-field measurement, to foster future research and help transition towards the practical application of this technology. For this purpose, a literature review was performed, and surveyed information encompassed sensor range, carrier platforms in use, sensor type, distance to the soil sample, measurement methodology, measured soil properties and soil management, among many others. From this, we derived a list of tools in use with their spectral measurement properties, including the potential cross-calibration with soil spectral libraries from laboratory spectroscopy of soil samples and potential measured target soil properties. Different instruments and sensors used to measure at varying wavelength ranges and with different spectral qualities are available for a large range of prices. The most frequently analysed soil properties included soil carbon contents (soil organic carbon, soil organic matter, total carbon), texture (clay, silt, sand), total nitrogen, pH and cation exchange capacity. Future perspectives comprise the implementation of larger databases, including different instruments and cropping systems as well as methodologies combining existing knowledge regarding laboratory spectroscopy with in-field methods. The authors highlight the need for a broadly accepted measurement protocol for in-field soil spectroscopy, fostering harmonization and standardization and consequently a more robust application in practice.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Soil Science

  • ISSN

    1351-0754

  • e-ISSN

    1351-0754

  • Volume of the periodical

    75

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    001217068100001

  • EID of the result in the Scopus database

    2-s2.0-85191356447