All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Co-applied biochar and drought tolerant PGPRs induced more improvement in soil quality and wheat production than their individual applications under drought conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F24%3A100100" target="_blank" >RIV/60460709:41210/24:100100 - isvavai.cz</a>

  • Result on the web

    <a href="https://peerj.com/articles/18171/" target="_blank" >https://peerj.com/articles/18171/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7717/peerj.18171" target="_blank" >10.7717/peerj.18171</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Co-applied biochar and drought tolerant PGPRs induced more improvement in soil quality and wheat production than their individual applications under drought conditions

  • Original language description

    Plant growth and development can be greatly impacted by drought stress. Suitable plant growth promoting rhizobacteria (PGPR) or biochar (BC) application has been shown to alleviate drought stress for plants. However, their co-application has not been extensively explored in this regard. We isolated bacterial strains from rhizospheric soils of plants from arid soils and characterized them for plant growth promoting characteristics like IAA production and phosphate solubilization as well as for drought tolerance. Three bacterial strains or so called PGPRs, identified as Bacillus thuringiensis, Bacillus tropicus, and Bacillus paramycoides based on their 16S rRNA, were screened for further experiments. Wheat was grown on normal, where soil moisture was maintained at 75% of water holding capacity (WHC), and induced-drought (25% WHC) stressed soil in pots. PGPRs were applied alone or in combination with a biochar derived from pyrolysis of tree wood. Drought stress substantially inhibited wheat growth. However, biochar addition under stressed conditions significantly improved the wheat growth and productivity. Briefly, it increased straw yield by 25%, 100-grain weight by 15% and grain yield by 10% compared to the control. Moreover, co-application of biochar with PGPRs B. thuringiensis, B. tropicus and B. paramycoides further enhanced straw yield by 37–41%, 100-grain weight by 30–36%, and grain yield by 22–22.57%, respectively. The co-application also enhanced soil quality by increasing plant-available phosphorus by 4–31%, microbial biomass by 33–45%, and soil K+ /Na+ ratio by 41–44%. Co-application of PGPRs and biochar alleviated plant drought stress by improving nutrient availability and absorption. Acting as a nutrient reservoir, biochar worked alongside PGPRs, who solubilized nutrients from the former and promoted wheat growth. We recommend that the co-application of suitable PGPRs and biochar is a better technology to produce wheat under drought conditions than using these enhancers separately.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PeerJ

  • ISSN

    2167-8359

  • e-ISSN

    2167-8359

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    OCT 25 2024

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    28

  • Pages from-to

    1-28

  • UT code for WoS article

    001349561500002

  • EID of the result in the Scopus database

    2-s2.0-85208143473