All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Measurement of water drop sizes generated by a dripping rainfall simulator with drippers in the form of hypodermic needles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F24%3A98592" target="_blank" >RIV/60460709:41210/24:98592 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/app14166969" target="_blank" >https://doi.org/10.3390/app14166969</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app14166969" target="_blank" >10.3390/app14166969</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Measurement of water drop sizes generated by a dripping rainfall simulator with drippers in the form of hypodermic needles

  • Original language description

    Dripping rainfall simulators (DRS) for soil research generate water drops with different types of drippers, but metal tubes are most commonly used, often in the form of hypodermic needles. However, scientific papers using dripping rainfall simulators are often incomplete in terms of data on hypodermic needle characteristics, as well as data on drops produced by hypodermic needles under different water pressures. This study determines which drop sizes and dripping speeds are generated by various hypodermic needles at different water pressures. For the purpose of this study, a dripping rainfall simulator was designed and constructed for laboratory use. Water drops were generated with 11 different needles, ranging in size from 16 G to 32 G (tube gauge number), at different water pressures. Measured water drop sizes ranged from 1.42 to 3.69 mm at a dripping speed between 10 and 360 drops per minute and water head from 14 to over 1970 mm. Measured drop sizes, supplemented with data from previous studies, provided information on the relation between drop sizes and the size of the hypodermic needles. Van Boxel's numerical model provided estimations of the fall velocity for different drop diameters and their kinetic energy for falling heights up to 11.5 m. The results of this research can be used to design dripping rainfall simulators for soil research.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Sciences-BASEL

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    001305714400001

  • EID of the result in the Scopus database

    2-s2.0-85202453017