Semidirect products of lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F08%3A24959" target="_blank" >RIV/60460709:41310/08:24959 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Semidirect products of lattices
Original language description
The semidirect product of lattices is a lattice analogue of the semidirect product of groups. In this article we introduce this construction, show some basic facts amd study a class of lattices closed under semidirect products. We also generalise this notion presenting the semidirect product of semilattices.
Czech name
Semidirektní součiny svazů
Czech description
The semidirect product of lattices is a lattice analogue of the semidirect product of groups. In this article we introduce this construction, show some basic facts amd study a class of lattices closed under semidirect products. We also generalise this notion presenting the semidirect product of semilattices.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F07%2FP015" target="_blank" >GP201/07/P015: Word problem in free left distributive idempotent groupoids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
57
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—