Semigroup Distances of Finite Groupoids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F14%3A64235" target="_blank" >RIV/60460709:41310/14:64235 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Semigroup Distances of Finite Groupoids
Original language description
The simplest cases of non-associative groupoids are presented by groupoids (so called SH-groupoids) having just one non-associative (ordered) triple of elements. In this paper only SH-groupoids having the simplest possible non-associative triple (a, a, a) are investigated. For each positive integer n finite SH-groupoids En(.) generated by at most two elements are constructed and their semigroup distances are described. It is proved that there are finite non-associative groupoids having their semigroup distance equal just to the arbitrary given positive integer n.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Italian Journal of Pure and Applied Mathematics
ISSN
1126-8042
e-ISSN
—
Volume of the periodical
N
Issue of the periodical within the volume
32
Country of publishing house
IT - ITALY
Number of pages
14
Pages from-to
547-560
UT code for WoS article
—
EID of the result in the Scopus database
—