All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F24%3A101328" target="_blank" >RIV/60460709:41310/24:101328 - isvavai.cz</a>

  • Alternative codes found

    RIV/60460709:41340/24:101328

  • Result on the web

    <a href="https://doi.org/10.3390/ma17235826" target="_blank" >https://doi.org/10.3390/ma17235826</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma17235826" target="_blank" >10.3390/ma17235826</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials

  • Original language description

    Firefighters need personal protection equipment and protective clothing to be safe and protected when responding to fire incidents. At present, firefighters' suits are developed by using inherently thermal-resistant fibers but pose serious problems related to comfort. In the present research, multilayered fire-fighting fabrics were developed with different fiber blends. Multilayer fire retardant (FR) fabrics with phase change materials (PCMs) inserts were developed and compared with reference multilayer fabrics without PCM. In this context, four fabric samples were chosen to fabricate the multilayer FR fabrics. Properties of multilayer fabrics were investigated, which include physical, thermo-physiological comfort, and flame-resistant performance. The heating process of the clothing was examined using infrared (IR) thermography, differential scanning calorimetry (DSC), thermal protective testing (TPP), and steady-state (Convective and Radiant) heat resistance tests. Areal density and thickness were measured as physical parameters, and air permeability (AP), overall moisture management capacity (OMMC), and thermal conductivity were measured as thermo-physiological comfort characteristics. The inclusion of PCM improved the thermal protection as well as flame resistance significantly. Sample S1 (Nomex + PTFE + Nomex with PCM) demonstrated superior fire resistance, air permeability, and thermal protection, with a 37.3% increase in air permeability as compared to the control sample (SC) by maintaining comfort while offering high thermal resilience. The inclusion of PCM enhanced its thermal regulation, moderating heat transfer. Flame resistance tests confirmed its excellent performance, while thermo-physiological assessments highlighted a well-balanced combination of thermal conductivity and air permeability. This study will help to improve the performance of firefighter protective fabrics and provide guidelines in terms of balancing comfort and performance while designing firefighter protective clothing for different climatic conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20500 - Materials engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

    1996-1944

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    DEC 2024

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    001376481100001

  • EID of the result in the Scopus database

    2-s2.0-85211814356