Creating a regional MODIS satellite-driven net primary production dataset for European forests
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F16%3A72083" target="_blank" >RIV/60460709:41320/16:72083 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3390/rs8070554" target="_blank" >http://dx.doi.org/10.3390/rs8070554</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs8070554" target="_blank" >10.3390/rs8070554</a>
Alternative languages
Result language
angličtina
Original language name
Creating a regional MODIS satellite-driven net primary production dataset for European forests
Original language description
Net primary production (NPP) is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data (NFI) from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
GK - Forestry
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
7
Country of publishing house
NN -
Number of pages
18
Pages from-to
1-18
UT code for WoS article
000382224800024
EID of the result in the Scopus database
—