All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Strength and Moisture-Related Properties of Filter Paper Coated with Nanocellulose

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F22%3A94220" target="_blank" >RIV/60460709:41320/22:94220 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2079-6412/12/10/1376" target="_blank" >https://www.mdpi.com/2079-6412/12/10/1376</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/coatings12101376" target="_blank" >10.3390/coatings12101376</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Strength and Moisture-Related Properties of Filter Paper Coated with Nanocellulose

  • Original language description

    The aim of this study was to assess selected properties of coatings incorporating nanocellulose, with the potential of being applied as a surface modification for cellulosic and lignocellulosic materials, particularly for applications within biodegradable packaging. Cellulose nanocrystal (CNC) and cellulose nanofibril (CNF) coatings were produced and applied on both sides of pure cellulose samples in the form of filter paper with a Mayer bar. Selected organosilicon compounds, albumin, and the TEMPO reagent were used as additional modifying substances. Coating parameters were determined, such as water contact angle, water absorption, hygroscopicity, and tensile strength. The presence of the coatings resulted in a significant increase in water vapor absorption by the substrate. Nanocellulose coatings proved to be sensitive to the water vapor and showed no barrier properties against it. However, the samples coated with nanocellulose had a noticeably lower tendency to absorb liquid water. The samples coa

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000803" target="_blank" >EF16_019/0000803: Advanced research supporting the forestry and wood-processing sector´s adaptation to global change and the 4th industrial revolution</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Coatings

  • ISSN

    2079-6412

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000872508100001

  • EID of the result in the Scopus database

    2-s2.0-85140892129