Large old trees increase growth under shifting climatic constraints: Aligning tree longevity and individual growth dynamics in primary mountain spruce forests
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F23%3A95030" target="_blank" >RIV/60460709:41320/23:95030 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1111/gcb.16461" target="_blank" >https://doi.org/10.1111/gcb.16461</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/gcb.16461" target="_blank" >10.1111/gcb.16461</a>
Alternative languages
Result language
angličtina
Original language name
Large old trees increase growth under shifting climatic constraints: Aligning tree longevity and individual growth dynamics in primary mountain spruce forests
Original language description
In a world of accelerating changes in environmental conditions driving tree growth, tradeoffs between tree growth rate and longevity could curtail the abundance of large old trees (LOTs), with potentially dire consequences for biodiversity and carbon storage. However, the influence of tree-level tradeoffs on forest structure at landscape scales will also depend on disturbances, which shape tree size and age distribution, and on whether LOTs can benefit from improved growing conditions due to climate warming. We analyzed temporal and spatial variation in radial growth patterns from similar to 5000 Norway spruce (Picea abies [L.] H. Karst) live and dead trees from the Western Carpathian primary spruce forest stands. We applied mixed-linear modeling to quantify the importance of LOT growth histories and stand dynamics (i.e., competition and disturbance factors) on lifespan. Finally, we assessed regional synchronization in radial growth variability over the 20th century, and modeled the effects of stand dynamics and climate on LOTs recent growth trends. Tree age varied considerably among forest stands, implying an important role of disturbance as an age constraint. Slow juvenile growth and longer period of suppressed growth prolonged tree lifespan, while increasing disturbance severity and shorter time since last disturbance decreased it. The highest age was not achieved only by trees with continuous slow growth, but those with slow juvenile growth followed by subsequent growth releases. Growth trend analysis demonstrated an increase in absolute growth rates in response to climate warming, with late summer temperatures driving the recent growth trend. Contrary to our expectation that LOTs would eventually exhibit declining growth rates, the oldest LOTs (>400 years) continuously increase growth throughout their lives, indicating a high phenotypic plasticity of LOTs for increasing biomass, and a strong carbon sink role of primary spruce forests under rising temperatures, intensifying droughts, and increasing bark beetle outbreaks.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40102 - Forestry
Result continuities
Project
<a href="/en/project/GA21-27454S" target="_blank" >GA21-27454S: Large scale analyses of primary forests: Disentangling drivers of biomass and biodiversity indicators</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
GLOBAL CHANGE BIOLOGY
ISSN
1354-1013
e-ISSN
1354-1013
Volume of the periodical
29
Issue of the periodical within the volume
JAN 2023
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
22
Pages from-to
143-164
UT code for WoS article
000866092300001
EID of the result in the Scopus database
2-s2.0-85139648704