All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High Leach-Resistant Fire-Retardant Modified Pine Wood (Pinus sylvestris L.) by In Situ Phosphorylation and Carbamylation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F23%3A97038" target="_blank" >RIV/60460709:41320/23:97038 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1021/acsomega.3c00146" target="_blank" >http://dx.doi.org/10.1021/acsomega.3c00146</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsomega.3c00146" target="_blank" >10.1021/acsomega.3c00146</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High Leach-Resistant Fire-Retardant Modified Pine Wood (Pinus sylvestris L.) by In Situ Phosphorylation and Carbamylation

  • Original language description

    The exterior application of fire-retardant (FR) timber necessitates it to have high durability because of the possibility to be exposed to rainfall. In this study, water-leaching resistance of FR wood has been imparted by grafting phosphate and carbamate groups of the water-soluble FR additives ammonium dihydrogen phosphate (ADP)/urea onto the hydroxyl groups of wood polymers via vacuum-pressure impregnation, followed by drying/heating in hot air. A darker and more reddish wood surface was observed after the modification. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid-state 13C cross-polarization magic-angle-spinning nuclear magnetic resonance (13C CP -MAS NMR), and direct-excitation 31P MAS NMR suggested the formation of C-O-P covalent bonds and urethane chemical bridges. Scanning electron microscopy/energy-dispersive X-ray spectrometry suggested the diffusion of ADP/urea into the cell wall. The gas evolution analyzed by thermogravimetric analysis coupled with quadrupole mass spectrometry revealed a potential grafting reaction mechanism starting with the thermal decomposition of urea. Thermal behavior showed that the FR-modified wood lowered the main decomposition temperature and promoted the formation of char residues at elevated temperatures. The FR activity was preserved even after an extensive water-leaching test, confirmed by the limiting oxygen index (LOI) and cone calorimetry. The reduction of fire hazards was achieved through the increase of the LOI to above 80%, reduction of 30% of the peak heat release rate (pHRR2), reduction of smoke production, and a longer ignition time. The modulus of elasticity of FR-modified wood increased by 40% without significantly decreasing the modulus of rupture.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10406 - Analytical chemistry

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000803" target="_blank" >EF16_019/0000803: Advanced research supporting the forestry and wood-processing sector´s adaptation to global change and the 4th industrial revolution</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Omega

  • ISSN

    2470-1343

  • e-ISSN

    2470-1343

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    11381-11396

  • UT code for WoS article

    000960080200001

  • EID of the result in the Scopus database

    2-s2.0-85150425157