Carbon dioxide enrichment affected flower numbers transiently and increased successful post-pollination development stably but without altering final acorn production in mature pedunculate oak (Quercus robur L.)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F24%3A100342" target="_blank" >RIV/60460709:41320/24:100342 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11676-024-01724-8" target="_blank" >http://dx.doi.org/10.1007/s11676-024-01724-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11676-024-01724-8" target="_blank" >10.1007/s11676-024-01724-8</a>
Alternative languages
Result language
angličtina
Original language name
Carbon dioxide enrichment affected flower numbers transiently and increased successful post-pollination development stably but without altering final acorn production in mature pedunculate oak (Quercus robur L.)
Original language description
Acorn production in oak (Quercus spp.) shows considerable inter-annual variation, known as masting, which provides a natural defence against seed predators but a highly-variable supply of acorns for uses such as in commercial tree planting each year. Anthropogenic emissions of greenhouse gases have been very widely reported to influence plant growth and seed or fruit size and quantity via the 'fertilisation effect' that leads to enhanced photosynthesis. To examine if acorn production in mature woodland communities will be affected by further increase in CO2, the contents of litter traps from a Free Air Carbon Enrichment (FACE) experiment in deciduous woodland in central England were analysed for numbers of flowers and acorns of pedunculate oak (Quercus robur L.) at different stages of development and their predation levels under ambient and elevated CO2 concentrations. Inter-annual variation in acorn numbers was considerable and cyclical between 2015 and 2021, with the greatest numbers of mature acorns in 2015, 2017 and 2020 but almost none in 2018. The numbers of flowers, enlarged cups, immature acorns, empty acorn cups, and galls in the litter traps also varied amongst years; comparatively high numbers of enlarged cups were recorded in 2018, suggesting Q. robur at this site is a fruit maturation masting species (i.e., the extent of abortion of pollinated flowers during acorn development affects mature acorn numbers greatly). Raising the atmospheric CO2 concentration by 150 mu L L-1, from early 2017, increased the numbers of immature acorns, and all acorn evidence (empty cups + immature acorns + mature acorns) detected in the litter traps compared to ambient controls by 2021, but did not consistently affect the numbers of flowers, enlarged cups, empty cups, or mature acorns. The number of flowers in the elevated CO2 plots' litter traps was greater in 2018 than 2017, one year after CO2 enrichment began, whereas numbers declined in ambient plots. Enrichment with CO2 also increased the number of oak knopper galls (Andricus quercuscalicis Burgsdorf). We conclude that elevated CO2 increased the occurrence of acorns developing from flowers, but the putative benefit to mature acorn numbers may have been hidden by excessive pre- and/or post-dispersal predation. There was no evidence that elevated CO2 altered masting behaviour.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40100 - Agriculture, Forestry, and Fisheries
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Forestry Research
ISSN
1007-662X
e-ISSN
1007-662X
Volume of the periodical
35
Issue of the periodical within the volume
1.0
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
12
Pages from-to
1-12
UT code for WoS article
001197984300003
EID of the result in the Scopus database
2-s2.0-85189615408