All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Combining LiDAR and Spaceborne Multispectral Data for Mapping Successional Forest Stages in Subtropical Forests

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F24%3A100484" target="_blank" >RIV/60460709:41320/24:100484 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.3390/rs16091523" target="_blank" >http://dx.doi.org/10.3390/rs16091523</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs16091523" target="_blank" >10.3390/rs16091523</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Combining LiDAR and Spaceborne Multispectral Data for Mapping Successional Forest Stages in Subtropical Forests

  • Original language description

    The Brazilian Atlantic Rainforest presents great diversity of flora and stand structures, making it difficult for traditional forest inventories to collect reliable and recurrent information to classify forest succession stages. In recent years, remote sensing data have been explored to save time and effort in classifying successional forest stages. However, there is a need to understand if any of these sensors stand out for this purpose. Here, we evaluate the use of multispectral satellite data from four different platforms (CBERS-4A, Landsat-8/OLI, PlanetScope, and Sentinel-2) and airborne light detection and ranging (LiDAR) to classify three forest succession stages in a subtropical ombrophilous mixed forest located in southern Brazil. Different features extracted from multispectral and LiDAR data, such as spectral bands, vegetation indices, texture features, and the canopy height model (CHM) and LiDAR intensity, were explored using two conventional machine learning methods such as random trees (RT) and support vector machine (SVM). The statistically based maximum likelihood (MLC) algorithm was also compared. The classification accuracy was evaluated by generating a confusion matrix and calculating the kappa index and standard deviation based on field measurements and unmanned aerial vehicle (UAV) data. Our results show that the kappa index ranged from 0.48 to 0.95, depending on the chosen dataset and method. The best result was obtained using the SVM algorithm associated with spectral bands, CHM, LiDAR intensity, and vegetation indices, regardless of the sensor. Datasets with Landsat-8 or Sentinel-2 information performed better results than other optical sensors, which may be due to the higher intraclass variability and less spectral bands in CBERS-4A and PlanetScope data. We found that the height information derived from airborne LiDAR and its intensity combined with the multispectral data increased the classification accuracy. However, the results were also satisfactory when using only multispectral data. These results highlight the potential of using freely available satellite information and open-source software to optimize forest inventories and monitoring, enabling a better understanding of forest structure and potentially supporting forest management initiatives and environmental licensing programs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20700 - Environmental engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote Sensing

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    9.0

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    22

  • Pages from-to

    1-22

  • UT code for WoS article

    001219879600001

  • EID of the result in the Scopus database

    2-s2.0-85193015975