Pathways and drivers of canopy accession across primary temperate forests of Europe
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F24%3A101500" target="_blank" >RIV/60460709:41320/24:101500 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.scitotenv.2023.167593" target="_blank" >https://doi.org/10.1016/j.scitotenv.2023.167593</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2023.167593" target="_blank" >10.1016/j.scitotenv.2023.167593</a>
Alternative languages
Result language
angličtina
Original language name
Pathways and drivers of canopy accession across primary temperate forests of Europe
Original language description
Canopy accession strategies reveal much about tree life histories and forest stand dynamics. However, the protracted nature of ascending to the canopy makes direct observation challenging. We use a reconstructive approach based on an extensive tree ring database to study the variability of canopy accession patterns of dominant tree species (Abies alba, Acer pseudoplatanus, Fagus sylvatica, Picea abies) in temperate mountain forests of Europe and elucidate how disturbance histories, climate, and topography affect canopy accession. All four species exhibited high variability of radial growth histories leading to canopy accession and indicated varying levels of shade tolerance. Individuals of all four species survived at least 100 years of initial suppression. Fir and particularly beech, however, survived longer periods of initial suppression, exhibited more release events, and reached the canopy later on average, with a larger share of trees accessing the canopy after initially suppressed growth. These results indicate the superior shade tolerance of beech and fir compared to spruce and maple. The two less shade-tolerant species conversely relied on faster growth rates, revealing their competitive advantage in non-suppressed conditions. Additionally, spruce from higher-elevation spruce-dominated forests survived shorter periods of initial shading and exhibited fewer releases, with a larger share of trees reaching the canopy after open canopy recruitment (i.e. in absence of suppression) and no subsequent releases compared to spruce growing in lower-elevation mixed forests. Finally, disturbance factors were identified as the primary driver of canopy accession, whereby disturbances accelerate canopy accession and consequently regulate competitive interactions. Intensifying disturbance regimes could thus promote shifts in species composition, particularly in favour of faster-growing, more light-demanding species.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40102 - Forestry
Result continuities
Project
<a href="/en/project/GA21-27454S" target="_blank" >GA21-27454S: Large scale analyses of primary forests: Disentangling drivers of biomass and biodiversity indicators</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Science of the Total Environment
ISSN
0048-9697
e-ISSN
0048-9697
Volume of the periodical
906
Issue of the periodical within the volume
JAN 1 2024
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
1-11
UT code for WoS article
001092668600001
EID of the result in the Scopus database
2-s2.0-85173270299