All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Using particle swarm optimization algorithm for parameter estimation in hydrological modelling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F15%3A67974" target="_blank" >RIV/60460709:41330/15:67974 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5593/SGEM2015/B21/S7.050" target="_blank" >http://dx.doi.org/10.5593/SGEM2015/B21/S7.050</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5593/SGEM2015/B21/S7.050" target="_blank" >10.5593/SGEM2015/B21/S7.050</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Using particle swarm optimization algorithm for parameter estimation in hydrological modelling

  • Original language description

    The main goal of this paper is to present a new approach in searching of the best set of parameters of the Bilan rainfall-runoff model. The particle swarm optimization technique was used and we compared the results of the PSO algorithms with linearly decreasing inertia weight and PSO with constriction factor. The model was tested on 30 monitored catchments with a length of observation of 54 years. The input data to the model are precipitation, evaporation, and air temperature, and the model simulates the runoff from the basin. The optimization ability of each method was estimated by the Nash-Sutcliffe coefficient, and other accuracy criteria like mean squared error, or mean absolute error was calculated. The results show that the PSO algorithm modifiedby the parameter of linearly decreasing inertia weight gives better estimation of parameters than the algorithm with constriction factor. The findings of this paper increase the usage of the PSO algorithm in real-life optimization proble

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    GeoConference on informatics, geoinformatics and remote sensing

  • ISBN

    978-619-7105-34-6

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    399-406

  • Publisher name

    International Multidisciplinary Scientific GeoConference SGEM

  • Place of publication

    Sofia, Bulgaria

  • Event location

    Albena, Bulgaria

  • Event date

    Jun 18, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000371599500050