All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Habitats as predictors in species distribution models: Shall we use continuous or binary data?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F22%3A91594" target="_blank" >RIV/60460709:41330/22:91594 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1111/ecog.06022" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/ecog.06022</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/ecog.06022" target="_blank" >10.1111/ecog.06022</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Habitats as predictors in species distribution models: Shall we use continuous or binary data?

  • Original language description

    The representation of a land cover type (i.e. habitat) within an area is often used as an explanatory variable in species distribution models. However, it is possible that a simple binary presenceabsence of the suitable habitat might be the most important determinant of the presenceabsence of some species and, thus, be a better predictor of species occurrence than the continuous parameter (area). We hypothesize that the binary predictor is more suitable for relatively rare habitats (e.g. wetlands) while for common habitats (e.g. forests) the amount of the focal habitat is a better predictor. We used the Third Atlas of Breeding Birds in the Czech Republic as the source of species distribution data and CORINE Land Cover inventory as the source of the landcover information. To test our hypothesis, we fitted generalized linear models of 32 water and 32 forest bird species. Our results show that for water bird species, models using binary predictors (presence/absence of the habitat) performed better than

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10619 - Biodiversity conservation

Result continuities

  • Project

    <a href="/en/project/SS02030018" target="_blank" >SS02030018: Center for Landscape and Biodiversity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Ecography

  • ISSN

    0906-7590

  • e-ISSN

    1600-0587

  • Volume of the periodical

    2022

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000782391400001

  • EID of the result in the Scopus database

    2-s2.0-85128222211