All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A perspective on the recovery mechanisms of spent lithium iron phosphate cathode materials in different oxidation environments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F23%3A97482" target="_blank" >RIV/60460709:41330/23:97482 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jhazmat.2022.130502" target="_blank" >http://dx.doi.org/10.1016/j.jhazmat.2022.130502</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jhazmat.2022.130502" target="_blank" >10.1016/j.jhazmat.2022.130502</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A perspective on the recovery mechanisms of spent lithium iron phosphate cathode materials in different oxidation environments

  • Original language description

    Oxidative extraction has become an economically viable option for recycling lithium (Li) from spent lithium iron phosphate (LiFePO4) batteries. In this study, the releases behaviour of Li from spent LiFePO4 batteries under different oxidizing conditions was investigated with sodium hypochlorite (NaClO) as the solid oxidant. We revealed that, due to the intervention of graphitic carbon, the generated species of Li in mechanochemical oxidation (NaClO:LiFePO4 at a molar ratio of 2:1, 5 min, and 600 rpm) was lithium carbonate (Li2CO3). The graphite layer provided a channel for the conversion of Li species released by mechanochemical oxidation. While in hydrometallurgical oxidation (NaClO:LiFePO4 at a molar ratio of 2:1 and 12.5 min), the presence of hydrogen species led to the formation of lithium chloride (LiCl). Moreover, life cycle assessment (LCA) demonstrated that for recycling 1.0 kg of spent LiFePO4 batteries, mechanochemical and hydrometallurgical oxidation could reduce carbon footprints by 2.81 kg CO2 eq and 2.88 kg CO2 eq, respectively. Our results indicate that the oxidative environment determines the release pathway of Li from the spent LiFePO4 cathode material, thereby regulating the product forms of Li and environmental impacts. This study can provide key technical guidance for Li recy-cling from spent LiFePO4 batteries.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Hazardous Materials

  • ISSN

    0304-3894

  • e-ISSN

    0304-3894

  • Volume of the periodical

    445

  • Issue of the periodical within the volume

    2023

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000903875400005

  • EID of the result in the Scopus database

    2-s2.0-85144081959