All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F16%3A43901887" target="_blank" >RIV/60461373:22310/16:43901887 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/16:33161244

  • Result on the web

    <a href="http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b06977" target="_blank" >http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b06977</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.6b06977" target="_blank" >10.1021/acs.jpcc.6b06977</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis

  • Original language description

    Despite the far-reaching applications of layered Sn chalcogenides to date, their electrochemistry and electrochemical and electrocatalytic properties remain a mystery. The bulk of current research highlights promising uses of layered Sn chalcogenides with limited discourse on the relevance of Sn valency or crystal structures to their properties. We therefore examine the electrochemistry of orthorhombic SnS and hexagonal SnS2, and determine the implications to their electrocatalytic applications, namely, oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Higher inherent electroactivity has been demonstrated in SnS2 as indicated by three distinct cathodic signals juxtaposed with a broad reduction peak in the largely electro-inactive SnS. In addition, SnS2 exhibits a faster heterogeneous electron transfer (HET) rate than SnS, though both are of less-than-sterling showing when compared to the glassy carbon (GC) electrode in terms of current intensity. The low onset potentials and current do not auger well for SnS and SnS, as electrocatalysts for ORR and OER. Contrarily, both Sn chalcogenides fare better as HER electrocatalysts, surpassing the GC electrode. SnS2 exudes stronger HER electrocatalytic behavior than SnS. The differing HER performance is explained by means of HER electrode kinetics and density functional theory (DFT) calculation. Using electrochemical impedance spectroscopy (EIS), SnS2 demonstrates significantly faster HER kinetics than SnS. The DFT study unveiled that the high electrocatalytic showing of SnS2 originated from the propitious Delta G(H) at the S edges. Conversely, Delta G(H) of SnS at all edges are disadvantageous for HER. The results provide crucial knowledge on the electrochemistry and electrocatalysis of Sn chalcogenides and create opportunities for future developments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CA - Inorganic chemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

  • Volume of the periodical

    120

  • Issue of the periodical within the volume

    42

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    24098-24111

  • UT code for WoS article

    000386640800022

  • EID of the result in the Scopus database