All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Layered Platinum Dichalcogenides (PtS2, PtSe2, and PtTe2) Electrocatalysis: Monotonic Dependence on the Chalcogen Size

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F16%3A43901906" target="_blank" >RIV/60461373:22310/16:43901906 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/16:33161234

  • Result on the web

    <a href="http://onlinelibrary.wiley.com/doi/10.1002/adfm.201505402/full" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/adfm.201505402/full</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adfm.201505402" target="_blank" >10.1002/adfm.201505402</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Layered Platinum Dichalcogenides (PtS2, PtSe2, and PtTe2) Electrocatalysis: Monotonic Dependence on the Chalcogen Size

  • Original language description

    Presently, research in layered transition metal dichalcogenides (TMDs) for numerous electrochemical applications have largely focused on Group 6 TMDs, especially MoS2 and WS2, whereas TMDs belonging to other groups are relatively unexplored. This work unravels the electrochemistry of Group 10 TMDs: specifically PtS2, PtSe2, and PtTe2. Here, the inherent electroactivities of these Pt dichalcogenides and the effectiveness of electrochemical activation on their charge transfer and electrocatalytic properties are thoroughly examined. By performing density functional theory (DFT) calculations, the electrochemical and electrocatalytic behaviors of the Pt dichalcogenides are elucidated. The charge transfer and electrocatalytic attributes of the Pt dichalcogenides are strongly associated with their electronic structures. In terms of charge transfer, electrochemical activation has been successful for all Pt dichalcogenides as evident in the faster heterogeneous electron transfer (HET) rates observed in electrochemically reduced Pt dichalcogenides. Interestingly, the hydrogen evolution reaction (HER) performance of the Pt dichalcogenides adheres to a trend of PtTe2 > PtSe2 > PtS2 whereby the HER catalytic property increases down the chalcogen group. Importantly, the DFT study shows this correlation to their electronic property in which PtS2 is semiconducting, PtSe(2)is semimetallic, and PtTe2 is metallic. Furthermore, Pt dichalcogenides are effectively activated for HER. Distinct electronic structures of Pt dichalcogenides account for their different responses to electrochemical activation. Among all activated Pt dichalcogenides, PtS2 shows most accentuated improvement as a HER electrocatalyst with an exceptional 50% decline in HER overpotential. Knowledge on Pt dichalcogenides provides valuable insights in the field of TMD electrochemistry, in particular, for the currently underrepresented Group 10 TMDs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CA - Inorganic chemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advanced Functional Materials

  • ISSN

    1616-301X

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    24

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    4306-4318

  • UT code for WoS article

    000379734000007

  • EID of the result in the Scopus database