All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F16%3A43902079" target="_blank" >RIV/60461373:22310/16:43902079 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.msec.2016.07.027" target="_blank" >http://dx.doi.org/10.1016/j.msec.2016.07.027</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.msec.2016.07.027" target="_blank" >10.1016/j.msec.2016.07.027</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting

  • Original language description

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity similar to 0.15 GPa, compressive yield strength similar to 3 MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JG - Metallurgy, metal materials

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP108%2F12%2FG043" target="_blank" >GBP108/12/G043: Interface controlled properties of micro/nanocrystalline materials for advanced structural applications, biodegradable implants and hydrogen storage</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials science and engineering C

  • ISSN

    0928-4931

  • e-ISSN

  • Volume of the periodical

    69

  • Issue of the periodical within the volume

    December

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    631-639

  • UT code for WoS article

    000383930900075

  • EID of the result in the Scopus database