All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Group 6 Layered Transition-Metal Dichalcogenides in Lab-on-a-Chip Devices: 1T-Phase WS2 for Microfluidics Non-Enzymatic Detection of Hydrogen Peroxide

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F17%3A43913391" target="_blank" >RIV/60461373:22310/17:43913391 - isvavai.cz</a>

  • Result on the web

    <a href="http://pubs.acs.org/doi/abs/10.1021/acs.analchem.7b00302" target="_blank" >http://pubs.acs.org/doi/abs/10.1021/acs.analchem.7b00302</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.analchem.7b00302" target="_blank" >10.1021/acs.analchem.7b00302</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Group 6 Layered Transition-Metal Dichalcogenides in Lab-on-a-Chip Devices: 1T-Phase WS2 for Microfluidics Non-Enzymatic Detection of Hydrogen Peroxide

  • Original language description

    Two-dimensional (2D) layered transition-metal dichalcogenides (TMDs) have been placed in the spotlight for their advantageous properties for catalytic and sensing applications. However, little work is done to explore and exploit them in enhancing the performance of analytical lab-on-a-chip (LOC) devices. In this work, we demonstrate a simple, sensitive, and low-cost fabrication of electrochemical LOC microfluidic devices to be used for enzymatic detection. We integrated four t-BuLi exfoliated, group 6 TMD materials (MoS2, MoSe2, WS2, and WSe2) within the LOC devices by the drop-casting method and compared their performance for H2O2 detection. The 1T-phase WS2-based LOC device outperformed the rest of the TMD materials and exhibited a wide range of linear response (20 nM to 20 mu M and 100 mu M to 2 mM), low detection limit (2.0 nM), and good selectivity for applications in real sample analysis. This work may facilitate the expanded use of electrochemical LOC microfluidics, with its easier integrability, for applications in the field of biodiagnostics and sensing.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/GA16-05167S" target="_blank" >GA16-05167S: Ion beam modifications of graphene based structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analytical Chemistry

  • ISSN

    0003-2700

  • e-ISSN

  • Volume of the periodical

    89

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    4978-4985

  • UT code for WoS article

    000400723600032

  • EID of the result in the Scopus database

    2-s2.0-85020415176