Morphological Effects and Stabilization of the Metallic 1T Phase in Layered V-, Nb-, and Ta-Doped WSe2 for Electrocatalysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F18%3A43915727" target="_blank" >RIV/60461373:22310/18:43915727 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/chem.201704158" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/chem.201704158</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/chem.201704158" target="_blank" >10.1002/chem.201704158</a>
Alternative languages
Result language
angličtina
Original language name
Morphological Effects and Stabilization of the Metallic 1T Phase in Layered V-, Nb-, and Ta-Doped WSe2 for Electrocatalysis
Original language description
Layered transition-metal dichalcogenides ( TMDs) are valued for their electrocatalytic properties toward the hydrogen-evolution reaction ( HER) and oxygen-reduction reaction ( ORR). One effective strategy to activate the electrocatalytic properties of TMDs is through doping. The optimistic outlook of doped-MoS2 as an electrocatalyst witnessed in previous reports spurred us to examine the effect of doping WSe2 with Group 5 transition-metal species, namely V, Nb, and Ta, in aspects of inherent electroactivities and catalysis. Apart from the mild reduction signal unique to the Group 5 transition-metal dopants, the Group 5 transition-metal-doped WSe2 materials are found to possess largely identical inherent electrochemistry to the undoped WSe2 with a characteristic anodic peak. Living up to expectations, the Group 5 transition-metal-doped WSe2 materials exhibit improved electrocatalytic HER efficiency, as evident by the lower HER overpotentials and Tafel slopes relative to undoped WSe2. After doping with V, Nb, or Ta species, an increased number of active sites is observed given the distinct changes in morphology from thick bulky pieces in undoped WSe2 to thinner fragments in doped WSe2. Although undoped WSe2 exists in the semiconducting 2H phase, the Group 5 transition-metal-doped WSe2 materials are dominated by the metallic 1T phase. Doping WSe2 with V, Nb, or Ta stabilizes the catalytic 1T phase and appears to induce the transition from the 2H to 1T phase. In contrast to the enhanced HER performance of WSe2 upon doping, Group 5 transition-metal dopants proved futile in activating the ORR electrocatalytic behavior of WSe2, for which the ORR efficiency is unchanged. Therefore, these findings facilitate the understanding of the role of Group 5 transition-metal dopants in the electrochemical and catalytic properties of WSe2 relative to their morphological features and provide an evaluation of the efficacy of doping TMDs in electrocatalytic applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
<a href="/en/project/GA17-11456S" target="_blank" >GA17-11456S: Layered transition metal dichalcogenides nanostructures for electrocatalysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemistry A European Journal
ISSN
0947-6539
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
13
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
3199-3208
UT code for WoS article
000426495100021
EID of the result in the Scopus database
2-s2.0-85041636031