Catalytic and Light-Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918114" target="_blank" >RIV/60461373:22310/19:43918114 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808678" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808678</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.201808678" target="_blank" >10.1002/adfm.201808678</a>
Alternative languages
Result language
angličtina
Original language name
Catalytic and Light-Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale
Original language description
The first models of mesoporous ZnO/Pt Janus micromotors that show fuel-free and light-powered propulsion depending on the interface roughness are shown. Two models of ZnO semiconducting particles with distinct surface morphologies and pore structures are synthesized by self-aggregation of primary nanoparticles and nanosheets into nanoscale rough and smooth microparticles, respectively. The self-assembled nanosheet model (smooth) provides a large surface for the formation of a continuous Pt layer with strong adherence, whereas the discontinuous Pt species take place inside the inter-nanoparticles pores in the self-assembled nanoparticle model (rough). The effects of the interface, surface porosity, defect, and charge transfer on the light-powered motion for both well-designed mesoporous ZnO/Pt Janus micromotors are investigated and compared to find the underlying propulsion mechanisms. The degradation of two model pollutants is demonstrated as a proof-of-concept application of these carefully engineered Janus micromotors. In this work, it is shown that by discreet material fabrication together with semiconductor/metal interface charge transport interpretation, it would be possible to develop new light-driven Janus micromotors based on other photocatalysts containing active surfaces such as TiO2.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
<a href="/en/project/GA16-05167S" target="_blank" >GA16-05167S: Ion beam modifications of graphene based structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
22
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
—
UT code for WoS article
000476566300005
EID of the result in the Scopus database
2-s2.0-85063756468