All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

TaS2, TaSe2, and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43920398" target="_blank" >RIV/60461373:22310/20:43920398 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/pdf/10.1021/acscatal.9b03184" target="_blank" >https://pubs.acs.org/doi/pdf/10.1021/acscatal.9b03184</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acscatal.9b03184" target="_blank" >10.1021/acscatal.9b03184</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    TaS2, TaSe2, and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction

  • Original language description

    Metallic two-dimensional transition-metal dichalcogenides (TMDs) of the group 5 metals are emerging as catalysts for an efficient hydrogen evolution reaction (HER). The HER activity of the group 5 TMDs originates from the unsaturated chalcogen edges and the highly active surface basal planes, whereas the HER activity of the widely studied group 6 TMDs originates solely from the chalcogen-or metal-unsaturated edges. However, the batch production of such nanomaterials and their scalable processing into high-performance electrocatalysts is still challenging. Herein, we report the liquid-phase exfoliation of the 2H-TaS2 crystals by using 2-propanol to produce single/few-layer (1H/2H) flakes, which are afterward deposited as catalytic films. A thermal treatment-aided texturization of the catalytic films is used to increase their porosity, promoting the ion access to the basal planes of the flakes, as well as the number of catalytic edges of the flakes. The hybridization of the H-TaS2 flakes and H-TaSe2 flakes tunes the Gibbs free energy of the adsorbed atomic hydrogen onto the H-TaS2 basal planes to the optimal thermo-neutral value. In 0.5 M H2SO4, the heterogeneous catalysts exhibit a low overpotential (versus RHE, reversible hydrogen electrode) at the cathodic current of 10 mA cm-2 (η10) of 120 mV and high mass activity of 314 A g-1 at an overpotential of 200 mV. In 1 M KOH, they show a η10 of 230 mV and a mass activity of 220 A g-1 at an overpotential of 300 mV. Our results provide new insight into the usage of the metallic group 5 TMDs for the HER through scalable material preparation and electrode processing. Copyright © 2020 American Chemical Society.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/GA17-11456S" target="_blank" >GA17-11456S: Layered transition metal dichalcogenides nanostructures for electrocatalysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Catalysis

  • ISSN

    2155-5435

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    3313-3325

  • UT code for WoS article

    000518876300042

  • EID of the result in the Scopus database

    2-s2.0-85080871335