All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe-Organic van der Waals Heterostructures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43920403" target="_blank" >RIV/60461373:22310/20:43920403 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/pdf/10.1021/acsnano.9b09661" target="_blank" >https://pubs.acs.org/doi/pdf/10.1021/acsnano.9b09661</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsnano.9b09661" target="_blank" >10.1021/acsnano.9b09661</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe-Organic van der Waals Heterostructures

  • Original language description

    Layered indium selenide (InSe) is an emerging two-dimensional semiconductor that has shown significant promise for high-performance transistors and photodetectors. The range of optoelectronic applications for InSe can potentially be broadened by forming mixed-dimensional van der Waals heterostructures with zero-dimensional molecular systems that are widely employed in organic electronics and photovoltaics. Here, we report the spatially resolved investigation of photoinduced charge separation between InSe and two molecules (C70 and C8-BTBT) using scanning tunneling microscopy combined with laser illumination. We experimentally and computationally show that InSe forms type-II and type-I heterojunctions with C70 and C8-BTBT, respectively, due to an interplay of charge transfer and dielectric screening at the interface. Laser-excited scanning tunneling spectroscopy reveals a ∼0.25 eV decrease in the energy of the lowest unoccupied molecular orbital of C70 with optical illumination. Furthermore, photoluminescence spectroscopy and Kelvin probe force microscopy indicate that electron transfer from InSe to C70 in the type-II heterojunction induces a photovoltage that quantitatively matches the observed downshift in the tunneling spectra. In contrast, no significant changes are observed upon optical illumination in the type-I heterojunction formed between InSe and C8-BTBT. Density functional theory calculations further show that, despite the weak coupling between the molecular species and InSe, the band alignment of these mixed-dimensional heterostructures strongly differs from the one suggested by the ionization potential and electronic affinities of the isolated components. Self-energy-corrected density functional theory indicates that these effects are the result of the combination of charge redistribution at the interface and heterogeneous dielectric screening of the electron-electron interactions in the heterostructure. In addition to providing specific insight for mixed-dimensional InSe-organic van der Waals heterostructures, this work establishes a general experimental methodology for studying localized charge transfer at the molecular scale that is applicable to other photoactive nanoscale systems. Copyright © 2020 American Chemical Society.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/GA17-11456S" target="_blank" >GA17-11456S: Layered transition metal dichalcogenides nanostructures for electrocatalysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Nano

  • ISSN

    1936-0851

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    3509-3518

  • UT code for WoS article

    000526301400084

  • EID of the result in the Scopus database

    2-s2.0-85082342726