All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Plasma-Activated Polyvinyl Alcohol Foils for Cell Growth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43920914" target="_blank" >RIV/60461373:22310/20:43920914 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985823:_____/20:00537924 RIV/61389005:_____/20:00537924

  • Result on the web

    <a href="https://www.mdpi.com/2079-6412/10/11/1083" target="_blank" >https://www.mdpi.com/2079-6412/10/11/1083</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/coatings10111083" target="_blank" >10.3390/coatings10111083</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Plasma-Activated Polyvinyl Alcohol Foils for Cell Growth

  • Original language description

    Hydrogels, and not only natural polysaccharide hydrogels, are substances capable of absorbing large amounts of water and physiological fluids. In this study, we set out to optimize the process for preparing polyvinyl alcohol (PVA) hydrogels. Subsequently, we doped PVA foils with cellulose powder, with poly(ethylene glycol) (PEG) or with gold nanoparticles in PEG colloid solutions (Au). The foils were then modified in a plasma discharge to improve their biocompatibility. The properties of PVA foils were studied by various analytical methods. The use of a suitable dopant can significantly affect the surface wettability, the roughness, the morphology and the mechanical properties of the material. Plasma treatment of PVA leads to ultraviolet light-induced crosslinking and decreasing water absorption. At the same time, this treatment significantly improves the cytocompatibility of the polymer, which is manifested by enhanced growth of human adipose-derived stem cells. This positive effect on the cell behavior was most pronounced on PVA foils doped with PEG or with Au. This modification of PVA therefore seems to be most suitable for the use of this polymer as a cell carrier for tissue engineering, wound healing and other regenerative applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GA19-02482S" target="_blank" >GA19-02482S: Ion beam writing synthesis of novel microstructures in advanced polymers and nanocomposites</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Coatings

  • ISSN

    2079-6412

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

    "1083/1"-20

  • UT code for WoS article

    000592729900001

  • EID of the result in the Scopus database