All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Antibacterial properties of silver coated regenerated cellulose

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43921282" target="_blank" >RIV/60461373:22310/20:43921282 - isvavai.cz</a>

  • Result on the web

    <a href="https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/mnl.2019.0492" target="_blank" >https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/mnl.2019.0492</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1049/mnl.2019.0492" target="_blank" >10.1049/mnl.2019.0492</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Antibacterial properties of silver coated regenerated cellulose

  • Original language description

    This work is focused on the study and characterisation of surface properties of regenerated cellulose after plasma modification, which significantly affects its physical and chemical properties such as wettability, surface chemistry, and surface morphology. Depending on the selected parameters, such as the plasma exposure time of the substrate, its aging and the sputtering time with silver, the modified material was studied in different analytical methods. The ablation of the substrate was determined gravimetrically. Changes in surface roughness were detected by atomic force microscopy and chemical changes were studied with X-ray spectroscopy (XPS). Silver nanolayers were sputtered on the activated substrate and the antibacterial properties of these layers were studied. It has been determined the aging period for surface-treated under different exposure time, gravimetric analysis has shown almost linear mass loss with plasma treatment time, the surface roughness slightly decreases with the action of plasma. XPS analysis revealed that the oxygen content increased due to the higher reactivity of the surface of the modified cellulose. Antibacterial tests have shown that the silver layer sputtered on plasma activated regenerated cellulose significantly reduces the colonies of both Escherichia coli and Staphylococcus epidermidis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GA17-00885S" target="_blank" >GA17-00885S: Nanostructured cellulose-based scaffolds with tunable properties for tissue engineering</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Micro &amp; Nano Letters

  • ISSN

    1750-0443

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    4

  • Pages from-to

    161-164

  • UT code for WoS article

    000541520300008

  • EID of the result in the Scopus database

    2-s2.0-85079497374