All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Surface engineering strategy using urea to improve the rate performance of Na2Ti3O7 in Na‐ion batteries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43920433" target="_blank" >RIV/60461373:22310/21:43920433 - isvavai.cz</a>

  • Result on the web

    <a href="https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202003129" target="_blank" >https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202003129</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/chem.202003129" target="_blank" >10.1002/chem.202003129</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Surface engineering strategy using urea to improve the rate performance of Na2Ti3O7 in Na‐ion batteries

  • Original language description

    Na2Ti3O7 (NTO) is considered a promising anode material for Na‐ion batteries due to its layered structure with an open framework and low and safe average operating voltage of 0.3 V vs. Na+/Na. However, its poor electronic conductivity needs to be addressed to make this material attractive for practical applications among other anode choices. Here, we report a safe, controllable and affordable method using urea that significantly improves the rate performance of NTO by producing surface defects (e.g. oxygen vacancies and hydroxyl groups) and the secondary phase Na2Ti6O13. A comprehensive study using a combination of diffraction, microscopic, spectroscopic and electrochemical techniques supported by computational studies based on DTF calculations, was carried out to understand the effects of this treatment on the surface, chemistry and electronic and charge storage properties of NTO. This study underscores the benefits of using urea as a strategy for enhancing the charge storage properties of NTO and thus, unfolding the potential of this material in practical energy storage applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/LTAUSA19034" target="_blank" >LTAUSA19034: Two-Dimensional Nanomaterials for Application in Electronic</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemistry A European Journal

  • ISSN

    0947-6539

  • e-ISSN

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    38

  • Pages from-to

    3875-3886

  • UT code for WoS article

    000607564600001

  • EID of the result in the Scopus database

    2-s2.0-85099339484