All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ceramide liposomes for skin barrier recovery: A novel formulation based on natural skin lipids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43922290" target="_blank" >RIV/60461373:22310/21:43922290 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389013:_____/21:00539566 RIV/60461373:22340/21:43922290

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0378517321000685?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378517321000685?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijpharm.2021.120264" target="_blank" >10.1016/j.ijpharm.2021.120264</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ceramide liposomes for skin barrier recovery: A novel formulation based on natural skin lipids

  • Original language description

    Diseases related to a disrupted skin barrier are accompanied by lower levels of ceramides in the stratum corneum (SC) lipid matrix. Delivering ceramides directly into damaged skin is a viable alternative to conventional corticosteroids, but is hindered by their low skin bioavailability and limited nanoformulation ability. Here, we developed stable liposomal systems containing ceramides and other SC lipids, and tested their effectiveness in skin barrier repair. Lipid film hydration and high-pressure homogenization were used to prepare different types of liposomes. To determine the stability, the particle size and polydispersity index were measured. The optimal systems were found to include ceramide 3 and 6, cholesterol and stearic acid, with 10% urea in phosphate-buffered saline as the aqueous phase. The ability of the system to repair chemically-damaged porcine skin was tested. While treatment by a standard lipid suspension reduced the passage of a model permeant only to a limited extent, drug flux through the liposomally-treated skin was much closer to permeation through intact skin. The non-homogenized liposomes were more effective than their homogenized version. These findings were also confirmed by FTIR measurements. This suggests that our approach to liposomal development has considerable potential for the repair of a disrupted skin barrier. © 2021 Elsevier B.V.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    <a href="/en/project/GA19-09600S" target="_blank" >GA19-09600S: Integrated design methodology of nanoformulation processes for (trans-)dermal delivery of actives</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Pharmaceutics

  • ISSN

    0378-5173

  • e-ISSN

  • Volume of the periodical

    596

  • Issue of the periodical within the volume

    120264

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85100374773