All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Protection of hematite photoelectrodes by ALD-TiO2 capping

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43923715" target="_blank" >RIV/60461373:22310/21:43923715 - isvavai.cz</a>

  • Alternative codes found

    RIV/61388955:_____/21:00539266 RIV/60461373:22350/21:43923715 RIV/00216275:25310/21:39918170 RIV/00216305:26620/21:PU140746

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1010603020309230" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1010603020309230</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jphotochem.2020.113126" target="_blank" >10.1016/j.jphotochem.2020.113126</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Protection of hematite photoelectrodes by ALD-TiO2 capping

  • Original language description

    Iron (III) oxide, in the form of hematite (α-Fe2O3), is a n-type semiconductor which is photoactive in the visible spectral region. Therefore, use in photoelectrocatalysis and photoassisted water electrolysis may be suggested. For such implementations, stability of contacts with liquid phases is mandatory. Hematite is stable in alkaline media but less stable in acidic media. For the first time the coverage of porous photoactive Sn doped hematite by thin capping layers of TiO2, deposited by Atomic Layer Deposition (ALD) and its impact on photocurrent and chemical stability of hematite is shown. The nominal thicknesses of the TiO2 ALD coatings were 0.5, 2 and 7.5 nm. The presence of the TiO2 coatings was evidenced by X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy (HR-TEM) and scanning TEM coupled with energy dispersive X-ray (EDX) spectroscopy. HR-TEM analyses revealed that the TiO2 capping layers were amorphous and conformal. Exposure of uncovered hematite layers to 1 M sulfuric acid led to a nominal dissolution rate of 0.23 nm/h which was halved when a TiO2 ALD coating (7.5 nm thin) was applied. Due to mismatch of the valence band positions of the two semiconductors, photocurrents were strongly diminished as the capping layer thickness was increased. Post-calcination of as deposited ALD films on hematite resulted in an increase of photocurrent, which only exceeded photocurrents of pristine hematite when the ALD thickness was not more than 0.5 nm. © 2021 Elsevier B.V.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Photochemistry and Photobiology A: Chemistry

  • ISSN

    1010-6030

  • e-ISSN

  • Volume of the periodical

    409

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

  • UT code for WoS article

    000623634700001

  • EID of the result in the Scopus database

    2-s2.0-85099693410