All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

6FDA-DAM:DABA Co-Polyimide Mixed Matrix Membranes with GO and ZIF-8 Mixtures for Effective CO2/CH4 Separation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43923855" target="_blank" >RIV/60461373:22310/21:43923855 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985858:_____/21:00553839

  • Result on the web

    <a href="https://www.mdpi.com/2079-4991/11/3/668" target="_blank" >https://www.mdpi.com/2079-4991/11/3/668</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano11030668" target="_blank" >10.3390/nano11030668</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    6FDA-DAM:DABA Co-Polyimide Mixed Matrix Membranes with GO and ZIF-8 Mixtures for Effective CO2/CH4 Separation

  • Original language description

    This work presents the gas separation evaluation of 6FDA-DAM:DABA (3:1) co-polyimide and its enhanced mixed matrix membranes (MMMs) with graphene oxide (GO) and ZIF-8 (particle size of &lt;40 nm). The 6FDA-copolyimide was obtained through two-stage poly-condensation polymerization, while the ZIF-8 nanoparticles were synthesized using the dry and wet method. The MMMs were preliminarily prepared with 1-4 wt.% GO and 5-15 wt.% ZIF-8 filler loading independently. Based on the best performing GO MMM, the study proceeded with making MMMs based on the mixtures of GO and ZIF-8 with a fixed 1 wt.% GO content (related to the polymer matrix) and varied ZIF-8 loadings. All the materials were characterized thoroughly using TGA, FTIR, XRD, and FESEM. The gas separation was measured with 50:50 vol.% CO2:CH4 binary mixture at 2 bar feed pressure and 25 degrees C. The pristine 6FDA-copolyimide showed CO2 permeability (P-CO2) of 147 Barrer and CO2/CH4 selectivity (alpha(CO2/CH4)) of 47.5. At the optimum GO loading (1 wt.%), the P-CO2 and alpha(CO2/CH4) were improved by 22% and 7%, respectively. A combination of GO (1 wt.%)/ZIF-8 fillers tremendously improves its P-CO2; by 990% for GO/ZIF-8 (5 wt.%) and 1.124% for GO/ZIF-8 (10 wt.%). Regrettably, the MMMs lost their selectivity by 16-55% due to the non-selective filler-polymer interfacial voids. However, the hybrid MMM performances still resided close to the 2019 upper bound and showed good performance stability when tested at different feed pressure conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

    2079-4991

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000634002800001

  • EID of the result in the Scopus database

    2-s2.0-85102043231