All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lithium, Magnesium, and Zinc Centers N,N′-Chelated by an Amine-Amide Hybrid Ligand

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43925523" target="_blank" >RIV/60461373:22310/22:43925523 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c03850" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c03850</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.inorgchem.1c03850" target="_blank" >10.1021/acs.inorgchem.1c03850</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lithium, Magnesium, and Zinc Centers N,N′-Chelated by an Amine-Amide Hybrid Ligand

  • Original language description

    The synthesis and structure of lithium, magnesium, and zinc complexes N,N′-chelated by a hybrid amine-amido ligand ([2-(Me2NCH2)C6H4NR]-, abbreviated as LNR, where R = H, SiMe3, or Bn) are reported. The reaction of the least sterically demanding LNH with various magnesium sources gives the hexameric imide [LNMg]6 (4) by the elimination of n-butane from LNHMgnBu (2) or by the reaction of LNHLi (1) with MeMgBr. [LNH]2Mg (3) is obtained through the addition of 0.5 equiv of nBu2Mg or Mg[N(SiMe3)2]2 to LNH2 and with 1 equiv of nBu2Mg reacting to 2. Both LNHMgN(SiMe3)2 (6) and isostructural LNHZnN(SiMe3)2 (16) have been prepared using two different approaches: monodeprotonation of LNH2 by Zn/ Mg[N(SiMe3)2]2 in a 1:1 ratio or ligand substitution of 2 or LNHZnEt (12) by 0.5 equiv of Sn[N(SiMe3)2]2. The reactions of 2 or 3 with 1 provide the heterotrimetallic complex [LNH]4Li2Mg (5). Benzyl-or trimethylsilyl-substituted anilines [LN(SiMe3)H (7) and LN(Bn)H (8)] with 0.5 equiv of nBu2Mg allow the formation of homoleptic bis(amides) of the [LN(R)]2Mg type (10 and 11). Nevertheless, only the silylated secondary amine 7 is able to provide the heteroleptic n-butylmagnesium amide LN(SiMe3)MgnBu (9) upon reaction with an equimolar amount of nBu2Mg. Similarly, 12, [LNH]2Zn (13), LN(R)ZnEt (17 and 18), and [LN(R)]2Zn [R = SiMe3 (19) and Bn (20)] were prepared by the monodeprotonation of LNH2 or LN(R)H using Et2Zn in the corresponding stoichiometric ratio. LNHZnI was prepared by the nucleophilic substitution of an ethyl chain in 12 by molecular iodine. A heterometallic complex, [LNH]4Li2Zn (14), analogous to 5 was prepared from 12 or 13 with 1 or 2 equiv of 1, respectively. © 2022 American Chemical Society.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Inorganic Chemistry

  • ISSN

    0020-1669

  • e-ISSN

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    25

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    9392-9404

  • UT code for WoS article

    000820295400001

  • EID of the result in the Scopus database

    2-s2.0-85133103253