All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Topochemical Transformation of Two-Dimensional VSe2 into Metallic Nonlayered VO2for Water Splitting Reactions in Acidic and Alkaline Media

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43925970" target="_blank" >RIV/60461373:22310/22:43925970 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/full/10.1021/acsnano.1c06662" target="_blank" >https://pubs.acs.org/doi/full/10.1021/acsnano.1c06662</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsnano.1c06662" target="_blank" >10.1021/acsnano.1c06662</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Topochemical Transformation of Two-Dimensional VSe2 into Metallic Nonlayered VO2for Water Splitting Reactions in Acidic and Alkaline Media

  • Original language description

    The engineering of the structural and morphological properties of nanomaterials is a fundamental aspect to attain desired performance in energy storage/conversion systems and multifunctional composites. We report the synthesis of room temperature-stable metallic rutile VO2 (VO2 (R)) nanosheets by topochemically transforming liquid-phase exfoliated VSe2 in a reductive Ar-H2 atmosphere. The as-produced VO2 (R) represents an example of two-dimensional (2D) nonlayered materials, whose bulk counterparts do not have a layered structure composed by layers held together by van der Waals force or electrostatic forces between charged layers and counterbalancing ions amid them. By pretreating the VSe2 nanosheets by O2 plasma, the resulting 2D VO2 (R) nanosheets exhibit a porous morphology that increases the material specific surface area while introducing defective sites. The as-synthesized porous (holey)-VO2 (R) nanosheets are investigated as metallic catalysts for the water splitting reactions in both acidic and alkaline media, reaching a maximum mass activity of 972.3 A g-1 at -0.300 V vs RHE for the hydrogen evolution reaction (HER) in 0.5 M H2SO4 (faradaic efficiency = 100%, overpotential for the HER at 10 mA cm-2 = 0.184 V) and a mass activity (calculated for a non 100% faradaic efficiency) of 745.9 A g-1 at +1.580 V vs RHE for the oxygen evolution reaction (OER) in 1 M KOH (overpotential for the OER at 10 mA cm-2 = 0.209 V). By demonstrating proof-of-concept electrolyzers, our results show the possibility to synthesize special material phases through topochemical conversion of 2D materials for advanced energy-related applications. © 2022 American Chemical Society. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Nano

  • ISSN

    1936-0851

  • e-ISSN

    1936-086X

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    351-367

  • UT code for WoS article

    000736824500001

  • EID of the result in the Scopus database

    2-s2.0-85122405270