All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Grain-Boundary-Rich Triphasic Artificial Hybrid Interphase Toward Practical Magnesium Metal Anodes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43924150" target="_blank" >RIV/60461373:22310/23:43924150 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202210639" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202210639</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adfm.202210639" target="_blank" >10.1002/adfm.202210639</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Grain-Boundary-Rich Triphasic Artificial Hybrid Interphase Toward Practical Magnesium Metal Anodes

  • Original language description

    Magnesium metal anodes have attracted widespread attention for their high volumetric capacity and natural abundance, but are precluded from practical applications by poor rate capability and limited lifespan due to sluggish ion-transfer kinetics and uneven deposition behavior. Herein, for the first time a grain-boundary-rich triphasic artificial hybrid interphase, consisting of Sb metal, Mg3Sb2 alloy, and MgCl2, is designed on Mg anode surface by a facile solution treatment method, enabling high-rate and long-cycle Mg plating/stripping behavior. The triphasic artificial hybrid interphase affords high magnesiophilicity and ionic conductivity to reduce the energy barriers for Mg2+ desolvation and deposition. Meanwhile, the abundant grain boundaries redistribute Mg2+ flux at the electrode-electrolyte interface and guide uniform Mg deposition. Accordingly, the as-designed Mg metal anode achieves ultralong cycling life of 350 h at a high current density of 5 mA cm−2 and a large areal capacity of 5 mAh cm−2, outperforming previously reported Mg metal anodes with artificial interphases. Full cells with Mo6 cathode also show extraordinary stability over a long lifespan of 8000 cycles at a high rate of 5 C. The rational artificial interphase design and the understanding of composition-structure-function relationships shed deep insights into the development of fast-charging and long-cycling Mg metal batteries. © 2022 Wiley-VCH GmbH.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/GC20-16124J" target="_blank" >GC20-16124J: Two-dimensional layered transition metal dichalcogenides/ nanostructured carbons composites for electrochemical energy storage and conversion</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advanced Functional Materials

  • ISSN

    1616-301X

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000888633600001

  • EID of the result in the Scopus database

    2-s2.0-85142375326