Grain-Boundary-Rich Triphasic Artificial Hybrid Interphase Toward Practical Magnesium Metal Anodes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43924150" target="_blank" >RIV/60461373:22310/23:43924150 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202210639" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202210639</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202210639" target="_blank" >10.1002/adfm.202210639</a>
Alternative languages
Result language
angličtina
Original language name
Grain-Boundary-Rich Triphasic Artificial Hybrid Interphase Toward Practical Magnesium Metal Anodes
Original language description
Magnesium metal anodes have attracted widespread attention for their high volumetric capacity and natural abundance, but are precluded from practical applications by poor rate capability and limited lifespan due to sluggish ion-transfer kinetics and uneven deposition behavior. Herein, for the first time a grain-boundary-rich triphasic artificial hybrid interphase, consisting of Sb metal, Mg3Sb2 alloy, and MgCl2, is designed on Mg anode surface by a facile solution treatment method, enabling high-rate and long-cycle Mg plating/stripping behavior. The triphasic artificial hybrid interphase affords high magnesiophilicity and ionic conductivity to reduce the energy barriers for Mg2+ desolvation and deposition. Meanwhile, the abundant grain boundaries redistribute Mg2+ flux at the electrode-electrolyte interface and guide uniform Mg deposition. Accordingly, the as-designed Mg metal anode achieves ultralong cycling life of 350 h at a high current density of 5 mA cm−2 and a large areal capacity of 5 mAh cm−2, outperforming previously reported Mg metal anodes with artificial interphases. Full cells with Mo6 cathode also show extraordinary stability over a long lifespan of 8000 cycles at a high rate of 5 C. The rational artificial interphase design and the understanding of composition-structure-function relationships shed deep insights into the development of fast-charging and long-cycling Mg metal batteries. © 2022 Wiley-VCH GmbH.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
<a href="/en/project/GC20-16124J" target="_blank" >GC20-16124J: Two-dimensional layered transition metal dichalcogenides/ nanostructured carbons composites for electrochemical energy storage and conversion</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
—
UT code for WoS article
000888633600001
EID of the result in the Scopus database
2-s2.0-85142375326