Hybrid Polymer Electrolyte Encased Cathode Particles Interface-Based Core–Shell Structure for High-Performance Room Temperature All-Solid-State Batteries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43924607" target="_blank" >RIV/60461373:22310/23:43924607 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1002/aenm.202202981" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/aenm.202202981</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/aenm.202202981" target="_blank" >10.1002/aenm.202202981</a>
Alternative languages
Result language
angličtina
Original language name
Hybrid Polymer Electrolyte Encased Cathode Particles Interface-Based Core–Shell Structure for High-Performance Room Temperature All-Solid-State Batteries
Original language description
A smooth interfacial contact between electrode and electrolyte, alleviation of dendrite formation, low internal resistance, and preparation of thin electrolyte (<20 µm) are the key challenging tasks in the practical application of Li7La3Zr2O12 (LLZO)-based solid-state batteries (SSBs). This paper develops a unique strategy to reduce interfacial resistance by designing an interface-based core–shell structure via direct integration of Al-LLZO ceramic nanofibers incorporated poly(vinylidene fluoride)/LiTFSI on the surface of a porous cathode electrode (HPEIC). This yields an ultrathin solid polymer electrolyte with a thickness of 7 µm. The integrated HPEIC/Li SSB with LiFePO4/C exhibits an initial specific capacity of 166 mAh g−1 at 0.1 C and 159 mAh g−1 with capacity retention of 100% after 120 cycles at 0.5 C (25 °C). The HPEIC/Li SSB with LiNi0.8Mn0.1Co0.1O2 cathode delivers a good discharge capacity of 134 mAh g−1 after 120 cycles at 0.5 C. The rational design of interface-based core–shell structure outperforms the conventional assembly of solid-state cells using free-standing solid electrolytes in specific capacity, internal resistance, and rate performance. The proposed strategy is simple, cost-effective, robust, and scalable manufacturing, which is essential for the practical applicability of SSBs. © 2022 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ADVANCED ENERGY MATERIALS
ISSN
1614-6832
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
—
UT code for WoS article
000892023900001
EID of the result in the Scopus database
2-s2.0-85142911021