All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

"Functional upcycling" of polymer waste towards the design of new materials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43927249" target="_blank" >RIV/60461373:22310/23:43927249 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.rsc.org/en/content/articlelanding/2023/CS/D2CS00689H" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2023/CS/D2CS00689H</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d2cs00689h" target="_blank" >10.1039/d2cs00689h</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    "Functional upcycling" of polymer waste towards the design of new materials

  • Original language description

    Diversification of polymer waste recycling is one of the solutions to improve the current environmental scenario. Upcycling is a promising strategy for converting polymer waste into molecular intermediates and high-value products. Although the catalytic transformations into small molecules have been actively discussed, the methods and characteristics of upcycling into new materials have not yet been addressed. Recently, the functionalisation of polymer wastes (polyethylene terephthalate bottles, polypropylene surgical masks, rubber tires, etc.) and their conversion into new materials with enhanced functionality have been proposed as an appealing alternative for dealing with polymer waste recycling/treatment. In this review, the term &apos;functional upcycling&apos; is introduced to designate any method of post-polymerisation modification or surface functionalisation without considerable polymer chain destruction to produce a new upcycled material with added value. This review explores the functional upcycling strategy with detailed consideration of the most common polymers, i.e., polystyrene, poly(methyl methacrylate), polyethylene, polypropylene, polyurethane, polyethylene terephthalate, polyvinyl chloride, polycarbonate, and rubber. We discuss the composition of plastic waste, reactivity, available physical/chemical agents for modification, and the interconnection between their properties and application. To date, upcycled materials have been successfully applied as adsorbents (including CO2), catalysts, electrode materials for energy storage and sensing, demonstrating a high added value. Importantly, the reviewed reports indicated that the specific performance of upcycled materials is generally comparable or higher than that of similar materials prepared from virgin polymer feedstock. All these advantages promote functional upcycling as a promising diversification approach against the common postprocessing methods employed for polymer waste. Finally, to identify the limitations and suggest future scope of research for each polymer, we comparatively analysed the aspects of functional upcycling with those of chemical and mechanical recycling, considering the energy and resource costs, toxicity of the used chemicals, environmental footprint, and the value added to the product.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Society Reviews

  • ISSN

    0306-0012

  • e-ISSN

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    14

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    78

  • Pages from-to

    4755-4832

  • UT code for WoS article

    001023716200001

  • EID of the result in the Scopus database

    2-s2.0-85164977332