All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Layered GeSe/thermally-reduced graphene oxide composites as efficient anodes for high-performance Li-ion batteries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43927576" target="_blank" >RIV/60461373:22310/23:43927576 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2352152X23027913" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352152X23027913</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.est.2023.109393" target="_blank" >10.1016/j.est.2023.109393</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Layered GeSe/thermally-reduced graphene oxide composites as efficient anodes for high-performance Li-ion batteries

  • Original language description

    Due to their layered structure and greater electrical conductivity compared to traditional metal oxides, layered metal selenides have been extensively explored as promising electrode materials for Li-ion batteries. The greatest obstacles to their continued growth, however, are the substantial volume change and particle agglomeration during cycling. In this work, layered GeSe/ thermally-reduced graphene oxide (TRG) composites were successfully synthesized by using a facile shear-force exfoliation approach. When a highly conductive TRG matrix was incorporated with GeSe particles, the resultant GeSe/TRG composite electrode achieved an impressive reversible capacity (&gt;840.1 mAh g(-1) at 0.1C), improved rate capability as well as excellent cycling stability. The remarkable improvement in electrochemical performance of the GeSe/TRG composite electrode corresponds to the TRG matrix, which potentially constructs an efficient conductive channel and serves as a flexible mechanical buffer for the restriction of volume expansion and particle aggregation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/GC20-16124J" target="_blank" >GC20-16124J: Two-dimensional layered transition metal dichalcogenides/ nanostructured carbons composites for electrochemical energy storage and conversion</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Energy Storage

  • ISSN

    2352-152X

  • e-ISSN

    2352-1538

  • Volume of the periodical

    74

  • Issue of the periodical within the volume

    DEC 25 2023

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    001109925700001

  • EID of the result in the Scopus database

    2-s2.0-85175544943