Harmonizing microstructures and enhancing mechanical resilience : Novel powder metallurgy approach for Zn–Mg alloys
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929368" target="_blank" >RIV/60461373:22310/24:43929368 - isvavai.cz</a>
Alternative codes found
RIV/68378271:_____/24:00587849 RIV/00216208:11320/24:10493286
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2238785424015345" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2238785424015345</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmrt.2024.06.223" target="_blank" >10.1016/j.jmrt.2024.06.223</a>
Alternative languages
Result language
angličtina
Original language name
Harmonizing microstructures and enhancing mechanical resilience : Novel powder metallurgy approach for Zn–Mg alloys
Original language description
Zinc alloys are recognised for their excellent biocompatibility and favourable corrosion rates, making them suitable for bioabsorbable implants. However, their mechanical properties necessitate improvement to fulfil the rigorous requirements of biomedical applications. This research focuses on engineering pseudo-harmonic structures within zinc alloys through a comprehensive method combining mechanical alloying, spark plasma sintering, and hot extrusion techniques. This fabrication process results in a composite material characterised by a soft core surrounded by a continuous, three-dimensional, ultrafine-grained hard shell. The experiment involved blending pure zinc with Zn–1Mg alloy powder, leading to the formation of both ductile zinc and fine-grained Zn–1Mg regions. While the Mg2Zn11 intermetallic phase was found to enhance the alloy's mechanical strength, the presence of oxide shells adversely affected the material's properties. The elimination of these shells via hot extrusion markedly improved the alloy's tensile strength, reaching an average value of tensile strength of 333 ± 7 MPa. This study provides significant insights into the material engineering of zinc-based alloys for biodegradable implant applications, demonstrating a viable approach to optimising their mechanical performance.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
<a href="/en/project/GF21-11439K" target="_blank" >GF21-11439K: Development of advanced bioabsorbable Zn-based materials using powder-metallurgy techniques</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Materials Research and Technology-JMR&T
ISSN
2238-7854
e-ISSN
2214-0697
Volume of the periodical
31
Issue of the periodical within the volume
July-August 2024
Country of publishing house
BR - BRAZIL
Number of pages
13
Pages from-to
2807-2819
UT code for WoS article
001269253900001
EID of the result in the Scopus database
2-s2.0-85198038790