All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Elucidating the Complex Oxidation Behavior of Aqueous H3PO3 on Pt Electrodes via In Situ Tender X-ray Absorption Near-Edge Structure Spectroscopy at the P K-Edge

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43930822" target="_blank" >RIV/60461373:22310/24:43930822 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/jacs.3c12381" target="_blank" >https://pubs.acs.org/doi/10.1021/jacs.3c12381</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/jacs.3c12381" target="_blank" >10.1021/jacs.3c12381</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Elucidating the Complex Oxidation Behavior of Aqueous H3PO3 on Pt Electrodes via In Situ Tender X-ray Absorption Near-Edge Structure Spectroscopy at the P K-Edge

  • Original language description

    In situ tender X-ray absorption near-edge structure (XANES) spectroscopy at the P K-edge was utilized to investigate the oxidation mechanism of aqueous H3PO3 on Pt electrodes under various conditions relevant to high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) applications. XANES and electrochemical analysis were conducted under different tender X-ray irradiation doses, revealing that intense radiation induces the oxidation of aqueous H3PO3 via H2O yielding H3PO4 and H-2. A broadly applicable experimental procedure was successfully developed to suppress these undesirable radiation-induced effects, enabling a more accurate determination of the aqueous H3PO3 oxidation mechanism. In situ XANES studies of aqueous 5 mol dm(-3) H3PO3 on electrodes with varying Pt availability and surface roughness reveal that Pt catalyzes the oxidation of aqueous H3PO3 to H3PO4. This oxidation is enhanced upon applying a positive potential to the Pt electrode or raising the electrolyte temperature, the latter being corroborated by complementary ion-exchange chromatography measurements. Notably, all of these oxidation processes involve reactions with H2O, as further supported by XANES measurements of aqueous H3PO3 of different concentrations, showing a more pronounced oxidation in electrolytes with a higher H2O content. The significant role of water in the oxidation of H3PO3 to H3PO4 supports the reaction mechanisms proposed for various chemical processes observed in this work and provides valuable insights into potential strategies to mitigate Pt catalyst poisoning by H3PO3 during HT-PEMFC operation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/GF22-23668K" target="_blank" >GF22-23668K: Pt-based intermetallic alloy catalysts for improved performance of high-temperature PEM fuel cells with reduced Pt loading</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the American Chemical Society

  • ISSN

    0002-7863

  • e-ISSN

    1520-5126

  • Volume of the periodical

    146

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    7386-7399

  • UT code for WoS article

    001181875600001

  • EID of the result in the Scopus database

    2-s2.0-85187329704