All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Benchmarking performance: A round-robin testing for liquid alkaline electrolysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43931143" target="_blank" >RIV/60461373:22310/24:43931143 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0360319924049784?pes=vor&utm_source=scopus&getft_integrator=scopus" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360319924049784?pes=vor&utm_source=scopus&getft_integrator=scopus</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijhydene.2024.11.288" target="_blank" >10.1016/j.ijhydene.2024.11.288</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Benchmarking performance: A round-robin testing for liquid alkaline electrolysis

  • Original language description

    Liquid alkaline water electrolysis has gained considerable interest in recent years due to its promising role in an energy sector based on renewable energy sources. Its main advantage is the low investment cost of industrial alkaline water electrolyzers compared to other electrolysis technologies. A challenge remains in developing costefficient materials, stable in corrosive electrolytes, and offering competitive cell performance. Although there are many publications in liquid alkaline electrolysis, there is insufficient standardization of experimental conditions and procedures, reference materials, and hardware. As a result, comparability and reproducibility suffer, significantly slowing down research progress. This manuscript presents the initial efforts towards the development of such reference hardware and procedures within the framework of Task 30 Electrolysis in the Technology Collaboration Programme on Advanced Fuel Cells (AFC TCP) of the International Energy Agency (IEA). For this purpose, a homogenized setup including the electrolysis cell, functional materials, experimental conditions, and a test protocol was developed. The protocol and hardware were tested simultaneously at eleven different institutions in Europe and North America. To evaluate the success of this approach, polarization and run-in data were collected and analyzed for comparison, and performance differences were calculated. Significant disparities between the laboratories were observed and some key influence factors were identified: iron content in the electrolyte resulted to be a main source of deviation between experiments, along with temperature control and the conditioning of the cells. The results suggest that additional attention to detailed experimental conditions should be paid to obtain meaningful performance data in future research.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

  • ISSN

    0360-3199

  • e-ISSN

    1879-3487

  • Volume of the periodical

    95

  • Issue of the periodical within the volume

    December

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    1004-1010

  • UT code for WoS article

    001364301000001

  • EID of the result in the Scopus database

    2-s2.0-85209726211