All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Solid Biofuel characterization and ash properties of acacia Mangium

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22320%2F20%3A43920338" target="_blank" >RIV/60461373:22320/20:43920338 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.35933/paliva.2020.01.01" target="_blank" >https://doi.org/10.35933/paliva.2020.01.01</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.35933/paliva.2020.01.01" target="_blank" >10.35933/paliva.2020.01.01</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Solid Biofuel characterization and ash properties of acacia Mangium

  • Original language description

    Acacia Mangium is a common industrial planted woody biomass in the tropical and subtropical climates. As an economically viable, agroforestry beneficial and environmentally sustainable bio-energy form, it has the potential to generate heat for thermochemical conversion systems. This article provides a comprehensive evaluation of its characteristics, physiochemical properties, ash composition and transformation phenomena. In accordance with the ISO/DIN guides for solid fuels, the standard methods were applied. The results of analyses solid biofuel showed the significant calorific value (19-20 MJ/kg); high volatile matter, relatively low ash content; and a low S content. X-ray analyskjhgis detected high values of Ca, K, Fe, Al and Si the ashforming elements. Ash softening and fusion phenomena were observed, with heat generated continuously at constant rates (maintained at 550 ± 10 °C for 120 minutes and practically at 850 ± 10 °C for 240 minutes). The first signs of deformation were recorded at a temperature of approximately 1220 °C, with the melting point reached at 1310 °C, which was an advantage for a woody solid biofuel. © 2020, University of Chemistry and Technology, Faculty of Environmental Technology. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Paliva

  • ISSN

    1804-2058

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    6

  • Pages from-to

    1-6

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85083462939