All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Explosiveness of hydrocarbon vapours in industrial installations under various conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22320%2F20%3A43921755" target="_blank" >RIV/60461373:22320/20:43921755 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/129/37660" target="_blank" >https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/129/37660</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2495/RISK200081" target="_blank" >10.2495/RISK200081</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Explosiveness of hydrocarbon vapours in industrial installations under various conditions

  • Original language description

    Cleaning, maintenance and repair works in petroleum transport and storage equipment are activities connected with an increased risk of explosion. After the pipes and vessels have been emptied, residual amounts of flammable liquids can spontaneously evaporate into the equipment vapour space. To appraise the risk of explosion, it is necessary to assess the formation of an explosive mixture of hydrocarbons with air under various operating conditions. A device was designed that simulates the described system at a reduced scale under stationary conditions for which a vapour–liquid equilibrium is reached. The equilibrium gas phase was analysed to determine the influence of temperature, pressure, and initial liquid phase volume proportion on the lower explosion limit percentage value. The results of the experiments were compared with numerical calculations. Aspen HYSYS software was used for theoretical calculations of vapour–liquid equilibrium and estimation of the lower explosive limit percentage value. It has been confirmed that the concentration of flammable substances in the mixture increases with temperature. As expected, the concentration of flammable substances at a certain temperature decreased with increasing pressure, as the partial pressure of flammable substances remained approximately the same at elevated partial pressures of air. The prediction of the vapour phase composition based on equilibrium calculations in the process simulator provided a pessimistic estimate of the results with a higher hydrocarbon concentration than the experimental measurements. Since the theoretical estimate of the composition of the hydrocarbon-containing atmosphere was always on the “safe side”, it seems to be suitable for predicting the risk of explosion in industrial facilities under known conditions – temperature, pressure, composition and amount of flammable substance.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    WIT Transactions on Engineering Sciences

  • ISSN

    1743-3533

  • e-ISSN

  • Volume of the periodical

    129

  • Issue of the periodical within the volume

    XII

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    89-99

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85096441757